投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

模仿大脑:下一代计算机(3)

来源:微电子学与计算机 【在线投稿】 栏目:综合新闻 时间:2021-07-08
作者:网站采编
关键词:
摘要:不幸的是,算法用来识别神经网络中突触正确数值的技术来自于一套复杂的数学方法,被称为“反向传播”。这个过程需要执行一系列高精度运算,会消耗

不幸的是,算法用来识别神经网络中突触正确数值的技术来自于一套复杂的数学方法,被称为“反向传播”。这个过程需要执行一系列高精度运算,会消耗大量能量。这种方法适用于计算机,但对于一个要模拟大脑的系统而言并不是必要的,因为新系统运算的精度相对较低。

在这种情况下,与高精度高能耗的方法相比,再次选择模拟大脑的运算方式会更明智。值得注意的是,生物学上的突触不仅发挥了记忆功能,也是学习机制的核心。实际上,它们是可塑的,可以根据自身暴露的信息量调整自己的活动。例如,当通过一个突触相连的两个神经元同时活跃,使得这个突触的活动性增加,突触就会因此得到增强。但这种增强并不一定是完全彻底的,否则每个新信号都会抹去神经元在过去的经验过程中建立起的微弱联系。

如果要将这个原则应用到自旋电子学器件中,就要根据器件收到的信号,调整人工突触的数值。实际上,用这样的系统实现一定的可塑性是有可能的。当电压被施加到一个磁隧道结上的时候,自旋传递效应就会使其中一个纳米磁体的磁化方向发生改变。如果电压足够高,持续时间足够长,就足以让纳米磁体的磁化方向反转,从而将数值保存在磁隧道结中。但是这种反转不一定是可预测的:如果电压持续时间不够长,那么磁化方向有时会反转,有时候不会。而对磁隧道结施加的电压越高,磁化方向反转的概率也就越大,但不会达到100%。

4、学习能力

在通用存储器中,这种不确定的表现必须尽可能避免。但是神经拟态系统中,突触会按具体收到的信号逐渐改变它所处的神经网络的功能,调整系统对新任务的响应,并且不需要借助反向传播这样的烦琐过程。

2015年,我和同事证明,一个由自旋电子学存储器构成的系统可以学习计算高速公路上的车辆数量(精度为95%),或者识别手写数字,其方法与通用人工智能算法相同。对于这些相对简单的任务,它的表现与更传统的神经网络学习技术相当。(并且后者需要模拟更多的突触,消耗的能量更多。)但是对于复杂的任务,例如和围棋高手对局,这种新的方式还远远无法与传统技术相匹敌。

另外,即使我们能够实现人造突触,将信息储存在里面,并使它能够调整响应,以此模拟突触可塑性和学习过程,但一个完备的神经拟态系统还必须同时包含执行运算的神经元。

人类大脑中有接近1000亿个神经元,而今天的人工智能算法最多只能模拟几千万个神经元。有没有可能用现有的硅基晶体管技术模拟神经元?首先,用这种技术制造一个人工神经元就需要几百个晶体管,如果我们要在一个拇指大小的芯片上安装这么多元件,那么每个神经元的大小就要远远小于1毫米,这是不可能的。

例如,IBM在2014年发布的TrueNorth芯片就是一个神经拟态元件,它令人印象深刻,并且没有运用自旋电子学。这个系统包含50亿个晶体管(一个庞大的数字),能够模拟100万个神经元和数百万个突触。通过让运算和存储的区域相互靠近,IBM证明这样一个芯片的功率远小于普通的芯片,差距达几个数量级。

实际上,TrueNorth芯片的架构并不包含100万个神经元。不过TrueNorth芯片运行速度极快,因此一个数字电路可以模拟多个人工神经元(相当于在物理上聚集在一起的一组神经元),连续执行每个神经元负责的运算。这是一个微小却重大的革新,改变了制造人工神经元和人工突触的神经拟态的基本思想。到2017年,英特尔也开发了一个相似的芯片,称为Loihi,但它略逊一筹,只有13万个神经元。这些器件仍然体积庞大,很难想象通过这种方式就能制造出和人类大脑相当的东西。

自旋电子学还指出了另一条道路。磁隧道结可以模拟大脑神经元的核心功能,尤其是神经元之间通过释放电脉冲信号交流的特性。电脉冲本质上都是一样的,但其数量取决于神经元的活动。如果一个神经元在短时间内收到多个电信号,那么接下来它释放信号的频率也会提高;如果它只收到少量的信号,那么它传出的信号也较少。

传统的电子元件很难在纳米尺度上模拟神经冲动。实际上,要制造具备一定频率的脉冲信号,需要在电子回路中制造反馈循环,这也会占据空间。但是,用磁隧道结来实现这种行为是可能的。

一种解决方案是将输入信号转换为相加的电流(这点与生物体内的神经元完全相同),然后再将其注入磁隧道结。接下来,我们选择元件的性质,让输入电流中的电子的自旋不足以完全改变纳米磁体的磁化方向,而是能让它持续振动、旋转,就好像指南针的指针那样。当参考层和自由层磁化方向的相对朝向发生周期性变化,磁隧道结的电阻(称为磁电阻)就会发生变化,并表现为周期性的电流变化。输入电流越强,相对朝向的旋转速度就越快,输出信号的频率也就越高。这就得到了一个与神经元非常相似的行为。这种现象在室温下就能实现,并且对于纳米尺度元件而言十分稳定。因此,可以利用这种原理制造功能更完善的设备。

文章来源:《微电子学与计算机》 网址: http://www.wdzxyjsjzz.cn/zonghexinwen/2021/0708/614.html



上一篇:2021年计算机设备上市公司概念股有哪些?
下一篇:南京师范大学2020计算机专业考研数据分析

微电子学与计算机投稿 | 微电子学与计算机编辑部| 微电子学与计算机版面费 | 微电子学与计算机论文发表 | 微电子学与计算机最新目录
Copyright © 2018 《微电子学与计算机》杂志社 版权所有
投稿电话: 投稿邮箱: